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In a number of problems on the propagation of longitudinal thermoelastic waves in a rod, 
it is very important to take account of convective heat exchange with the surrounding medium, 
which in some cases may even predominate overthermal conductivity effects. For example, 
similar effects are encountered in measuring the frequency relationship for a material in 
rod specimens [I, 2], and also with high-frequency methods for predicting the supporting 
capacity of structural materials on a large base of cyclic loading [3]. 

Here we study the effect of thermal conductivity and heat exchange through the side sur- 
face of a rod on the evolution of nonlinear longitudinal waves. It has been demonstrated 
that in metals for ~avelengths large compared with the rod diameter, thermal conduc- 
tivity effects are negligibly small compared with conductive heat exchange. In this case 
the effect of heat exchange appears to be similar to oscillation energy dissipation in a rod 
made of viscoelastic material followed by relaxation [4]. Solutions have been studied des- 
cribing nonlinear steady-state and quasi-steady-state waves running in a single direction. 
Equations have been obtained for measuring the energy and amplitude of running waves and their 
partial solutions have been analyzed. 

Propagation of a nonlinear longitudinal wave in an infinite cylindrical rod, which in 
the original condition is in thermal equilibrium with the surroundings, is considered. With 
passage of a longitudinal wave, temperature drops occur between regions of compression and 
tension in the material, which leads to development of heat flow both within the rod and 
through its side surface [5, 6]. It is assumed that the length of the propagating waves is 
greater than the rod diameter, temperature is the same over its cross section, and thermo- 
elastic effects are small and are only retained in a linear approximation. Movement of rod 
particles in the radial direction is also considered. With these assumptions the nonlinear 
dynamic thermoelasticity problem is described by the following set of equations: 
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Here x = x'/A, t = Cst'/A, u = u'/AE0, T = T'/@ are dimensionless variables; x' is dimen- 
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e l a s t i c i t y  m o d u l i ;  E and v a r e  Y o u n g ' s  modu lus  and P o i s s o n ' s  r a t i o ;  P0 i s  m a t e r i a l  d e n s i t y ;  
~0 i s  c h a r a c t e r i s t i c  s t r a i n ;  u ' ( x ,  t )  i s  a x i a l  d i s p l a c e m e n t ;  c s = ( g / o o )  t / 2 ,  c x = ( g / p ) 1 / 2  a r e  
l o n g i t u d i n a l  and s h e a r  wave v e l o c i t i e s  i n  t h e  r o d ;  T i s  c u r r e n t  rod  t e m p e r a t u r e ;  T o i s  t e m p e r a -  
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respectively. 

For a rod of steel-grade Hecla 138 A with parameters [7, 8] ~ = 45.4 W/(m'~ Cp = 460 
J/(kg-~ h = 102 W/(m2"~ E = 2"i0 II Pa, P0 = 7-8"103 kg/m 3, v = 0.29, vl = -3-23"i011 
Pa, v2 = -0~.65.1011Pa, v 3 = -1.77"1011Pa, a T = 10 -5 K -I with strains e 0 ~ 10 -5, dimensionless 
coefficients in (i) and (2) are (T o = 300 K, @ ~ aT-1~0 ~ i0 -s K, 2a = i cm) 6a~0/E z -5"10 -6 , 
v2aZ/(2A2 ) = 5.10 -2 (a/A) z, ~TO/E 0 % i0 -s, X/(CsA ) = 2.6"i0 -s (A cm) -I, 2 h A / ( a p o C p C  s )  % i0 -9 
(A/a), aTc~T0~0/(cpO ) % 160. From the estimates provided it follows that in a rog of diameter 
2a = i cm with A ~ 20 a, heat exchange through the side surface predominates over thermal con- 
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ductivity. In fact, this situation should occur in the rod coverters of powerful ultrasonic 
systems [9, I0]. The reverse situation will occur with excitation of short pulses (solitons) 
in a wire of diameter 2a = 1 mm with A < i0 a [ii]. In the case when heat exchange markedly 
predominates over thermal conductivity, set (i), (2) is reduced to a single equation 
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where a parameter determining energy dissipation in the rod is the dimensionless heat exchange 
coefficient h,. In the limiting case (h, = 0, i.e., a thermally insulated rod), from (3) a 
nonlinear wave equation is obtained for adiabatic processes, and with h, = ~ for isothermal 
processes. In real situations h, % i0 -s, and therefore the presence of heat exchange may be con- 
sidered as a small deviation of wave processes from adiabatic processes. Considering that 
in the zero approximation u,t t z c2U,xx, we lead (3) to the form 
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Here the term proportional to u, t and U,xxt determines the low-frequency and high-frequency 
losses, respectively. In [2] it was shown that heat exchange through the side surface of 
a rod leads to a rheological equation for the material relating to the model of a standard 
viscoelastic body [i]. 

For long-wave perturbations (A/a > i), it is possible to introduce new (wave) variables 
U1, 2 [9] 
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reducing Eq. (4) to a symmetrical set of equations for connected normal waves 
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where the fucntions U i and U 2 describe strain waves running counter to each other; a H = 3a~0/E, 
= v2a2(cZ - v2)/4A 2 are coefficients of nonlinearity and dispersion; ~ = h,(l - c-Z), 5 = 

h*vZa2(c 2 - vZ)/2AZc are coefficients for low-frequency and high-frequency losses. In a 
linear conservative approximation, U l and U= are independent and only interact as a result 
of nonlinearity and dissipation. 

We consider evolution of a wave U 2 = U(x, t), running in the direction opposite of the x 
axis (single-wave approximation Ul(X , t) = 0). Since thermoelastic effects are small, then as 
an unperturbed solution it is possible to choose a nonlinear wave propagating in an elastic 
material. In this case ~ = 5 = 0, and system (6) is reduced to a Kortewege-de Vries equation, 
which permits solution in the form of running steady-state waves. In the general case the 
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form of the latter is nonsinusoidal, and it depends on the ratio of values for the nonlinear- 
ity ~H and material dispersion ~. Steady-state periodic waves and the strain U(g), depending 
on a single running variable $ = x - Vt, are described by an expression [9] 

U (~) 2A (K -- E) + 2A sn 2 -- s~ K ~ )  ~, s . (7) 

Here A is amplitude; V is wave velocity; s is coefficient of nonlinear distortions; K(s), 
(s) are first- and second-order whole elliptical integrals. Parameters V, A and A for this 

wave are connected by the relationships 
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E q u a t i o n s  ( 7 ) - ( 9 )  make i t  p o s s i b l e  t o  c o n s t r u c t  a r e l a t i o n s h i p  be tween A, V and s w i t h  d i f -  
f e r e n t  A and to  d e t e r m i n e  t h e  shape  o f  t h e  wave f o r  s t r a i n s  U($) .  Given in  F i g .  1 i s  t h e  
dependence ofthe nonlinear distortion coefficient and wave velocity on amplitude for a rod made 
of steel Hecla 138 A with A = 60 a, 45 a, 37 a. Shown in Fig. 2 is the distribution of dis- 
placements u($), strains U($), and strain rates U'($) along coordinate ~ with A = 45 a and 
A = 0.4" 10 -2, 0.7"10 -2, 1"10 -2 (lines 1-3). With small amplitudes the shape of all of the 
waves is sinusoidal. With A > 10 -2 the shape of the displacement wave is close to saw-tooth, 
and the strain wave U is a sequence of pulses. Expression (7) describes two different clas- 
ses of wave: nonlinear quasi-harmonic waves with small amplitudes and essentially nonsinusoi- 
dal waves (quasisolitons) with large amplitudes [9-11]. 

By drawing attention to the smallness of dissipation effects, we limit consideration to 
nonlinear quasi-steady-state waves described by expression (7) with slowly changing parameters 
A, V, A. It is assumed that as before they are connected by relationships (8) and (9). We 
use an equation for the change in energy [ll], which for the case in question has the form 

Here w = 
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energy. It is noted that in the right-hand part of (i0) there 

are only dissipative terms characterizing low-frequency and high-frequency losses. By ex- 
pressing energy w and the integral in the right-hand part of (I0) in terms of wave amplitude 
A, we arrive at an equation 
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In the linear case h * 0, analysis of solutions for Eq. (ii) leads to the well-known result 
of exponential wave amplitude attenuation A = A0e-g t with g = ~ + 4 6m2(i - 4~2A2~), when the 

4( ~:/2Aa/2 and (ii) takes the form wave is close to a soliton, w =-~ --a~/ 

dA 4~A + ~ c'y6 A2" (12)  
dt 3 

The change in soliton amplitude occurs by a more complex rule [12] 

Ao~ ( 13 ) 
A ( t ) =  86c~ ( e--~U) 

1 - - - - ~  A o ~1--  
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(A 0 is initial amplitude). Whence it follows that low-frequency and high-frequency losses 
lead to different rules for the change in wave amplitude. For the example given, an estimate 
of coefficients in Eq. (12) indicates that ~ ~ 10-12(A/a) and 14 ~H6/3~ 2"10-1~(A/a). Conse- 
quently, with strains A ~l(u,x~10 -s) high-frequency losses are negligibly small, and there- 
fore it is possible to ignore the second term in the denominator of (13), and as a result 
of this the soliton amplitude will also decrease by an exponential rule but with another 
decrement. 

The authors thank A. I. Vesnitskii for considering the work. 
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ANALYSIS OF THE POWDER COMPACTION PROCESS IN A CYLINDRICAL CONTAINER 

ON THE BASIS OF A SIMPLE MODEL 

A. I. Matytsin UDC 539.374 

Explosive compaction of powders is often accomplished in cylindrical geometry when the 
applied load is quite large and, as a result of this loading, may affect the strength proper- 
ties of materials. A similar point of view was expressed in [i], and this is also indicated 
by experimental results [2-4]. During shock loading the final powder density, shock wave 
(SW) amplitude, and the strength properties of the compacted material appear to be connected 
with each other in a complex fashion. However, since the main change in powder volume occurs 
in the shock-wave front (SWF), as a first approximation the change in density behind the 
front is ignored, and it is assumed to be constant. In addition, there is one more severe 
simplification, i.e., the dynamic yield strength is assumed to be constant. With detonation 
rates much greater than the SW velocity in the powder, the slope of it to the container axis 
is small, and for analysis it is possible to use a unidimensional model. 

In a unidimensional arrangement the problem of loading a compacting cylinder without 
a shell was resolved in [5]; the case was studied numerically for constant load and dynamic 
yield strength depending linearly on internal energy of the material, and also the asymptotic 
behavior was found for SW amplitude at the start and end of the process of its convergence. 
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